Step of Proof: minus_imin 12,41

Inference at * 1 
Iof proof for Lemma minus imin:



1. a : 
2. b : 
  (-if a b then a else b fi ) = if (-az -b then -b else -a fi  
latex

 by InteriorProof ((SplitOnConclITEs) 
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 2:n
CollapseTHEN ((Aut),(first_nat 3:n)) (first_tok SupInf:t) inil_term))) 
latex


C.


DefinitionsT, ff, P  Q, P & Q, P  Q, tt, P  Q, x:AB(x), if b then t else f fi , True, , t  T, Unit, ,
Lemmastrue wf, squash wf, assert of lt int, bnot of le int, eqff to assert, assert of le int, eqtt to assert, iff transitivity, bnot wf, lt int wf, le wf, assert wf, bool wf, le int wf

origin